Skip navigation

상단메뉴

글로벌메뉴

좌측메뉴

학술행사

검색

논문

tab menu

  • View
  • All
  • 수학부
  • 물리학부
  • 계산과학부
  • Center for Advanced Computation

Seminar View

Seminar
TITLE Strong Cosmic Censorship in Spherical Symmetry for Two-Ended Asymptotically Flat Initial Data II: The Exterior of the Black Hole Region
KIAS AUTHORS Oh, Sung-Jin,Oh, Sung-Jin
JOURNAL ANNALS OF PDE, 2019
ARCHIVE  
ABSTRACT This is the second and last paper of a two-part series in which we prove the C-2-formulation of the strong cosmic censorship conjecture for the Einstein-Maxwell- (real)-scalar-field system in spherical symmetry for two-ended asymptotically flat data. In the first paper, we showed that the maximal globally hyperbolic future development of an admissible asymptotially flat Cauchy initial data set is C-2-futureinextendible provided that an L-2 -averaged (inverse) polynomial lower bound for the derivative of the scalar field holds along each horizon. In this paper, we show that this lower bound is indeed satisfied for solutions arising from a generic set of Cauchy initial data. Roughly speaking, the generic set is open with respect to a (weighted) C-1 topology and is dense with respect to a (weighted) C-infinity topology. The proof of the theorem is based on extensions of the ideas in our previous work on the linear instability of Reissner-Nordstrom Cauchy horizon, as well as a new large data asymptotic stability result which gives good decay estimates for the difference of the radiation fields for small perturbations of an arbitrary solution.
  • before page
  • list
  • next page
Seminar List

keyword

fiel&date

~