Skip navigation

상단메뉴

글로벌메뉴

좌측메뉴

학술행사

검색

논문

tab menu

  • View
  • All
  • 수학부
  • 물리학부
  • 계산과학부
  • Center for Advanced Computation

Seminar View

Seminar
TITLE Tangible reduction in learning sample complexity with large classical samples and small quantum system
KIAS AUTHORS Kim, Jaewan
JOURNAL QUANTUM INFORMATION PROCESSING, 2021
ARCHIVE  
ABSTRACT Quantum computation requires large classical datasets to be embedded into quantum states in order to exploit quantum parallelism. However, this embedding requires considerable resources in general. It would therefore be desirable to avoid it, if possible, for noisy intermediate-scale quantum (NISQ) implementation. Accordingly, we consider a classical-quantum hybrid architecture, which allows large classical input data, with a relatively small-scale quantum system. This hybrid architecture is used to implement a sampling oracle. It is shown that in the presence of noise in the hybrid oracle, the effects of internal noise can cancel each other out and thereby improve the query success rate. It is also shown that such an immunity of the hybrid oracle to noise directly and tangibly reduces the sample complexity in the framework of computational learning theory. This NISQ-compatible learning advantage is attributed to the oracle's ability to handle large input features.
  • before page
  • list
  • next page
Seminar List

keyword

fiel&date

~