Skip navigation

상단메뉴

글로벌메뉴

좌측메뉴

학술행사

검색

논문

tab menu

  • View
  • All
  • 수학부
  • 물리학부
  • 계산과학부
  • Center for Advanced Computation

Seminar View

Seminar
TITLE UNIFORM STABILITY AND MEAN-FIELD LIMIT FOR THE AUGMENTED KURAMOTO MODEL
KIAS AUTHORS Ha, Seung-Yeal
JOURNAL NETWORKS AND HETEROGENEOUS MEDIA, 2018
ARCHIVE  
ABSTRACT We present two uniform estimates on stability and mean-field limit for the "augmented Kuramoto model (AKM)" arising from the second-order lifting of the first-order Kuramoto model (KM) for synchronization. In particular, we address three issues such as synchronization estimate, uniform stability and mean-field limit which are valid uniformly in time for the AKM. The derived mean-field equation for the AKM corresponds to the dissipative Vlasov-McKean type equation. The kinetic Kuramoto equation for distributed natural frequencies is not compatible with the frequency variance functional approach for the complete synchronization. In contrast, the kinetic equation for the AKM has a similar structural similarity with the kinetic Cucker-Smale equation which admits the Lyapunov functional approach for the variance. We present sufficient frameworks leading to the uniform stability and mean-field limit for the AKM.
  • before page
  • list
  • next page
Seminar List

keyword

fiel&date

~