ABSTRACT |
We present a second-order extension of the first-order Lohe Hermitian sphere (LHS) model and study its emergent asymptotic dynamics. Our proposed model incorporates an inertial effect as a second-order extension. The inertia term can generate an oscillatory behavior of particle trajectory in a small time interval(initial layer) which causes a technical difficulty for the application of monotonicity-based arguments. For emergent estimates, we employ two-point correlation function which is defined as an inner product between positions of particles. For a homogeneous ensemble with the same frequency matrix, we provide two sufficient frameworks in terms of system parameters and initial data to show that two-point correlation functions tend to the unity which is exactly the same as the complete aggregation. In contrast, for a heterogeneous ensemble with distinct frequency matrices, we provide a sufficient framework in terms of system parameters and initial data, which makes two-point correlation functions be close to unity by increasing the principal coupling strength. |