Skip navigation

상단메뉴

글로벌메뉴

좌측메뉴

물리학부

검색

논문

Seminar
NUMBER P21061
AUTHOR Dashti, H. N.
TITLE Invasion percolation in short-range and long-range disorder background
ARCHIVE arXiv:2105.00840v3
FILE  
JOURNAL PHYSICAL REVIEW E, 2021
ABSTRACT In the original invasion percolation model, a random number quantifies the role of necks, or generally the quality of pores, ignoring the structure of pores and impermeable regions (to which the invader cannot enter). In this paper, we investigate invasion percolation (IP), taking into account the impermeable regions, the configuration of which is modeled by ordinary and Ising-correlated site percolation (with short-range interactions, SRI), on top of which the IP dynamics is defined. We model the long-ranged correlations of pores by a random Coulomb potential (RCP). By examining various dynamical observables, we suggest that the critical exponents of Ising-correlated cases change considerably only in the vicinity of the critical point (critical temperature), while for the ordinary percolation case the exponents are robust against the occupancy parameter p. The properties of the model for the long-range interactions [LRI (RCP)] are completely different from the normal IP. In particular, the fractal dimension of the external frontier of the largest hole is nearly 4 3 for SRI far from the critical points, which is compatible with normal IP, while it converges to 1.099 +/- 0.04 for RCP. For the latter case, the time dependence of our observables is divided into three parts: the power law (short time), the logarithmic (moderate time), and the linear (long time) regimes. The second crossover time is shown to go to infinity in the thermodynamic limit, whereas the first crossover time is nearly unchanged, signaling the dominance of the logarithmic regime. The average gyration radius of the growing clusters, the length of their external perimeter, and the corresponding roughness are shown to be nearly constant for the long-time regime in the thermodynamic limit.
  • before page
  • list
  • next page

fiel&date

~