AUTHOR |
Kim, Joontae,Kim, Joontae |
TITLE |
Equivariant wrapped Floer homology and symmetric periodic Reeb orbits |
ARCHIVE |
https://doi.org/10.1017/etds.2020.144 |
FILE |
|
JOURNAL |
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022 |
ABSTRACT |
The aim of this article is to apply a Floer theory to study symmetric periodic Reeb orbits. We define positive equivariant wrapped Floer homology using a (anti-)symplectic involution on a Liouville domain and investigate its algebraic properties. By a careful analysis of index iterations, we obtain a non-trivial lower bound on the minimal number of geometrically distinct symmetric periodic Reeb orbits on a certain class of real contact manifolds. This includes non-degenerate real dynamically convex star-shaped hypersurfaces in R-2n which are invariant under complex conjugation. As a result, we give a partial answer to the Seifert conjecture on brake orbits in the contact setting. |